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ABSTRACT 
Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic 
development in powers of the Rayleigh number. Carries the approximation through to the 34th order. 
Analyses convergence of the resulting series for the Nusselt number in both monocellular and multicellular 
cases, providing insight in the validity regions of the power series. 
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NOMENCLATURE 

Ψ = Stream function 
T = Temperature 
Ra = Rayleigh number 
Rac = Critical Rayleigh number 
Nu = Nusselt number 

= Modified Nusselt number 

ε = Parameter of development ε= 
φ,τ = Eigenfunctions 
λ = Eigenvalue 
x = Dimensionless horizontal co-ordinate 
z = Dimensionless vertical co-ordinate 

INTRODUCTION 

Natural convection in porous media has been the subject of many studies, the great number of 
publications on the subject being a testimony1,2. In the theoretical analysis of flow in the porous, 
vertical, rectangular cavity, heated from below, which is the subject of this study, Beck3 

performed a linear stability analysis of the convective solution from which he derived critical 
Rayleigh numbers and the type of convective flow which sets up after the first transition. 

Schubert and Strauss4 conducted a numerical study using a Galerkin method with double or 
triple Fourier series in the case of a square or cubic porous cavity heated from below. They proved 
the existence of monocellular and multicellular convective solutions for Rayleigh numbers higher 
than the critical values, at which the transition from conduction to convection occurs. 

Caltagirone and Fabrie5 confirmed Schubert and Strauss's results and extended their results to 
nonstationary flow using the same numerical approach as Schubert and Strauss. They found 
periodic as well as non-periodic solutions. 

Riley and Winters6 used results from bifurcation theory in their study of a porous, vertical, 
rectangular cavity heated from below. They showed numerically the existence and stability of 
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multiple solutions and analysed the influence of the height-width cavity ratio on the stability of 
the solutions. Building on these results, they produced a graph of the existence and stability of 
stationary solutions for different Rayleigh numbers and height-width ratios. 

This study was completed by Riley and Winters7, when they analysed the Hopf bifurcations of 
the different solutions. 

The purpose of this work is to use analytical methods for the construction of an accurate 
solution of the equations describing convection in a porous, vertical, rectangular cavity heated 
from below. The analytical solution obtained describes very well the mono-, bi- and tricellular 
flow in a square cavity, and can be extended to cavities of arbitrary height-width ratios. 

The solution uses an asymptotic development up to 34th order in the parameter ε = 
where Rac denotes the value of the critical Rayleigh number (critical for the transition from 
conduction to convection). 

The series can be constructed analytically because every power term consists of only a finite 
number of two-dimensional Fourier components. To find those components and their coefficients, 
it is necessary to use a program for symbolic computations. In this study the Maple program was 
used. The results were in very good accordance with numerical results that have been computed 
earlier by other authors. 

An estimation has been made for the convergence radius of the Nusselt number series solution, 
given in powers of (Ra - Rac). The series for the monocellular solution was found to be an 
alternating series, with the result that the error is of the same order as the largest ignored term in 
the series. 

The series solution that has been obtained can be used as a reference solution for the validation 
of future numerical codes. The discrepancy between this method and that of the Legendre spectral 
collocation (43 × 43) is less than 10-13 for Ra = 45. A 34th order development is not sufficient to 
obtain the radius of convergence of these series in the bi- and tricellular case. However, the 
computation of the Nusselt number gives results in good agreement with the numerical one. 

ASYMPTOTIC APPROACH 

The following system of coupled partial differential equations describes the natural convection in 
terms of the stream function Ψ and the temperature T: 

The domain Ω is the square cavity [0, π] × [0, π], heated from below, with adiabatic side walls. At 
the boundaries ∂Ω. of the cavity, the following conditions are prescribed: 

Ψ = 0 ∀(X, Z) ∈ ∂Ω. (2a) 
T=0 z = 0 ∀x (2b) 

Τ = -π z = π ∀x (2c) 

This dimensionless formulation has been chosen in order to obtain an analytical solution in the 
simplest possible form. 
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The problem described above has a conductive solution valid for any value of Ra. It is given by 
Ψ0 = 0 T0 = -z. (3) 

Starting from this solution, the Rayleigh number for the solutions which set up when the Rayleigh 
number exceeds its critical value Rac can be expressed in the form 

Ra =Rac + ε2. (4) 

Let Ψ and T be written in the following asymptotic expansions 

Using equations (1a) and (2a), it is seen that Ψ is determined by T. Therefore Ψ can be written as 
Ψ = Ψ(T). (6) 

One can easily see that Ψ is linear. Equations (1) and (2) can now be represented by the following 
symbolic form 

D(T, Ψ(T)) = 0. (7) 

Expanding the operator D with respect to ε, the equation can be rewritten as 

εD'(T0, Ψ(T0))t1 + Ο(ε2) = 0 (8) 

with D' a linear operator. The solution t1 is searched in a basis of eigenfunctions of the operator 
D'. 

One can easily prove that the functions 

are eigenfunctions of D', with eigenvalues 

Critical values Rac are those for which λn,m = 0 , so we have 

The Nth order approximation is given by 

Then, an asymptotic expansion is constructed for chosen numbers m and n, which remain constant 
during the entire calculation. The choice m = n = 1 yields the monocellular solution, η = 2, m =1 
the bicellular solution, n = 3, m = 1 the tricellular, etc. Choices with m >1 yield mathematical 
solutions which are always unstable. For chosen m and n, it is found that 

t1 = a1τn,m· (13) 

The coefficient a1 will be determined later. 
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Let TN, ΨΝ = Ψ (TN) be an Nth order solution. We have 

D(ΤΝ,ΨΝ) = O(εN+1). (14) 

Let RN+1 denote the (N+1)th order term of the residual 

D(TN,ΨN) = εN + 1RN + 1+O(εN + 2). (15) 

Since the functions τn.m are eigenfunctions of the linear operator D', we have 

D(ΤΝ + εΝ+1τk,l,ΨΝ + εΝ+1Ψ(τk,l)) = εΝ+1(R
Ν+1+λk,lτk,l)+O(εΝ+2). (16) 

Therefore, let us write RN+1 in the form 

Let us write tN + 1 in the form 

This yields to 

with 

αn,m,N+1 = ƒN+1(αN-1). (20) 
For all Ν > 3, fN is a linear function, but f3 is cubic. The three resulting solutions yield the 
conductive and two convective solutions, each with cells turning in opposite directions. 

Increasingly high orders of accuracy can be attained by following this method. 

RESULTS 

After having obtained solution for the temperature and stream function up to the 32nd order in ε, 
a similar expression is derived for the Nusselt number, which is a series in powers of ε 2 . 
Therefore, the Nusselt number Nu is written as 

For the monocellular solution, the series is an alternating series, and the convergence radius 
appears to be equal to the critical Rayleigh value Rac. This allows us to have an improved 
estimation of the Nusselt number by 
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This new approximation permits not only a higher accuracy, but also a better approximation of 
Nusselt numbers beyond the convergence radius, as shown by the comparison of the results 
(Tables 1 and 3) obtained from the asymptotic solution and those of the spectral collocation 
method mentioned above. A look at Tables 2-6 concerning bi- and tricellular flow shows that the 
expansion to the 32nd order does not allow for an accurate estimation of the convergence radius 
for the power series of the Nusselt number. However, the analytical solution obtained gives a good 
estimation of the solution of the problem, for a wide range of Rayleigh numbers. 
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Table I Nusselt number for monocellular flow 

Ra 

40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

NuN numer 

1.0261794087377 
1.255196788925 
1.452229038043 
1.625249807210 
1.7796363848 
1.9191744666 
2.046622822 
2.164048659 
2.273036 
2.374825 
2.470398 
2.560549 
2.645923 

NuN asymp. 

1.0261794087371 
1.255196788923 
1.452229038246 
1.625249686269 
1.7796229737 
1.9186703464 
2.036822727 
2.043454594 

-
-
-
-
-

Λ 

NuN asymp. 

identical 
identical 
1.452229038434 
1.625249807187 
1.7796363806 
1.9191744140 
2.046622018 
2.164041026 
2.272986 
2.374574 
2.469441 
2.557751 
2.640312 

q16(Ra - Rac)16 

-0.11889 10-29 

-0.29579 10-13 

-0.89386 10-9 

-0.44973 10-6 

-0.39205 10-4 

-0.12838 10-2 

-0.22474 10-1 

-0.25459 
-
-
-
-
-

Table 2 Nusselt number for bicellular flow 

Ra 

65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 

NuN numer 

1.10641386417 
1.26356799365 
1.41744309151 
1.568266578 
1.71588368 
1.85997950 
2.0002157 
2.1363029 
2.2680306 
2.3952272 
2.5179802 
2.636168 

Λ 

NuN asymp. 

1.10641386418 
1.26356799368 
1.41744309152 
1.568266573 
1.71588338 
1.85997217 
2.0001116 
2.1353021 
2.2608550 
2.3542884 
2.3227308 
1.8338256 

NuN asymp. 

identical 
identical 
1.41744309157 
1.568266581 
1.71588373 
1.85997952 
2.0002055 
2.1361377 
2.2665188 
2.3853340 
2.4662712 
2.4111036 

Table 3 Convergence radius for monocellular flow 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 

qn 

0.05066 
-0.90896 

0.21557 
-0.54908 

0.14259 
-0.36750 

0.93288 
-0.23476 

0.59111 
-0.14956 

0.37968 
-0.96396 

0.24432 
-0.61836 

0.15648 
-0.39625 

10-1 

10-4 
10-6 
10-7 

10-9 

10-11 
10-12 

10-14 

10-15 

10-17 

10-19 

10-20 

10-22 

10-23 

10-25 

19.74 
55.73 
42.16 
39.26 
38.51 
38.80 
39.39 
39.74 
39.71 
39.52 
39.39 
39.39 
39.46 
39.51 
39.52 
39.49 

19.74 
33.17 
35.93 
36.74 
37.08 
37.36 
37.65 
37.90 
38.10 
38.24 
38.34 
38.43 
38.51 
38.58 
38.64 
38.69 
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Table 4 Convergence radius for bicellular flow 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

qn 

0.03242 
-0.1058 
0 2950 

-0.9577 
0.1431 

-0.1056 
0.1580 

-0 6737 
0.1322 

-0.6456 
-0.5572 
-0.4598 
0.1682 

-0.7496 
-0.3873 

10-3 
10-5 
10-7 
10-8 
10-10 
10-12 

10-14 
10-15 
10-18 
10-20 
10-24 
10-22 
10-25 
10-26 

30 
306 
36 
30 
67 
135 
66 
24 
51 
205 
116 
12 
27 
224 
19 

30 
97 
70 
57 
59 
68 
67 
59 
58 
66 
69 
60 
56 
62 
57 

Table 5 Convergence radius for tricellular flow 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

qn 

0.01824 
0.1158 
0.9569 

-0.3427 
-0.1871 
0.8325 
0.1149 

-0.3298 
-0.5794 
0.1234 
0.3220 

-0.5826 
-0.1831 
0.2508 

10-3 
10-6 
10-7 
10-9 

10-6 
10-12 
10-14 
10-16 
10-17 
10-19 
10-21 
10-22 
10-24 

54 
157 
121 
28 
183 
22 
72 
34 
57 
43 
41 
55 
32 
73 

54 
93 
101 
73 
88 
70 
70 
64 
64 
61 
59 
59 
56 
57 

Table 6 Nusselt number for tricellular flow 

Ra 

110 
120 
130 
140 
150 
160 
170 

NuN numer. 

1.0617268324 
1.201570134198 
1.421001419 
1.659415 
1.9093 
2.1639 
2.4177 

NuN asymp. 

1.00617268331 
1.20157013429 
1.421001137 
1.659337 
1.9058 
2.1067 
1.9743 
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CONCLUSIONS 

Recent developments in the field of symbolic computation have made possible the computation of 
very accurate analytical solutions of non-linear problems. We have obtained results for the 
problem of natural convection in porous media in a rectangular cavity for a range of Rayleigh 
numbers exceeding three times the critical value for the first transition. In the case of a 
monocellular flow, the alternating series is found to be convergent for Ra < 8 π 2 , a value very close 
to the critical Rac = 81.01, found by Riley and Winters6, above which bicellular flow becomes 
stable. The error in the determination of the Nusselt number has been evaluated very carefully for 
several values of Ra. The solution thus obtained could serve as a reference solution for the 
validation of numerical codes. 
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